(1) Thermodynamics
(reversibility, equilibrium)



Equilibrium

When an electrode dips into sol’n, a potential is established.

@equilibrium

g Pt

O(aq) + ne_(M) < R(aq) @M/S interface

(1) A net electrical charge on each of phase

(2) A charge separation =2 potential difference
b/w the M/S

(3) Chemical process establishes electrode
potential (potential determining equilibrium)

AG® = —nFE® = —RTInkK

Ha=Us+ zZyF

‘tiny # of e’ by — ds = P° + Eln{[o]}

(free e7, no usage of PS*) [R]

RT C* RT a’° 1
E=E®+—In—-=E° In—- ES=—(vou§
a: act|V|ty 2

v: stoichiometric coefficient



Three electrode system (half cell)

AV
O

auxiliary

Interest: only WE

Successful RE = equilibrium

* The chemical composition of the M
and the S must be held fixed.

* A small electric current should be
passed through the RE (no electrolysis,
no perturbation of the conc. of the
species)

* Potential term (¢prr — @) attains its
thermodynamic  equilibrium  value
rapidly. In other words the potential
determining equilibrium should display
fast electrode kinetics.



7-5. Converting potential vs REs
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Liquid junction potential : difference of cation & anion velocity

nF R]

Since the rxn involves the transfer of the e~ b/w the two distinct phases, (M) and (S,
aq), as this e~ transfer rxn moves towards equilibrium,

a net charge separation must develop b/w the M and S.

This charge separation creates a potential difference at the M/S interface.

RT ([0]
* Phase potential: ¢y — @5 bu = s =%+ pln {—}

On the contrary, the difference in potential b/w any two points in the interior
of the phase must be zero (inner potential).
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10. Salt bridge

Liquid junction potential : difference of cation & anion velocity

s
Cu Zn

{ Cu2+ Zn2+ J

In the single container (mixing all)
Zn(s) + Cu?*(aq) © Zn?*(aq) + Cu(s) AG® = —1.11F

=>» The zinc electrode would very rapidly become
copper plated.

w/ salt bridge
=>» Avoiding the copper plating on the zinc electrode
=» Considering ‘liquid junction potential’ due to high
conc. of KCl in the salt bridge



11. Liquid junction potential :

Electrode area: A

difference of cation & anion velocity

e Migration ofionin S

The movement of the cation and anion
constitutes the flow of i in the bulk of the sol’n.

1 [ (I/A) «— current density

= p T RA (V /1) <— voltage gradient

K : condutivity (Q*m™)
p: resistivity ({1 m)
R: resistance ({})

. Conductivity < Current density (j, velocity of ions)

e Molar conductivity, 4 (21 cmZmol?)

K A

A:E K

Asalt - aA_|_ + bA_

(a, b: mole)

[
»

Conc.

The cations and anions move independently of each other.
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e Single ion molar conductivities

electrical
attractlon

Viscous force (Stokes’ Law)

A frictional force due to the movement of the ion
5oL e o e movere

past and over ‘solvent” molecules which serve to

impede the progress of the ion
viscous drag

TABLE 2.3.2 Ionic Properties at Infinite
Dilution in Aqueous Solutions at 25°C

Electrical force = viscous force

Ion Ao, cm? Q Lequiv? u, cm?sec”! VTP
o radius H* 349.82 3.625 X 1077
14 : _ K* 73.52 7.619 X 107
ze (_) = 6mavn v: velocity Na* 50.11 5.193x 107*

[ n: viscosity Li* 38.69 4.010 X 107
NH; 73.4 7.61 x107*
5Ca%* 59.50 6.166 X 10™*

v ze(V /1) ze OH™ 198 205 X 1073
X X X Ccl-

W/~ eman(V/D)  6may

-
NO3
OAc™ B
=>» A should be large for Cl0; =
e Small ions %{S(?S: ® =i = Hydration shell
. . 3 TS 4610 X 1U
e Highly charged ions IFe(CN)}~  101.0 1.047 X 1073
® Solvents of low viscosity iFe(CN)g~ 1105 1.145 X 107

“From D. A. Maclnnes, “The Principles of Electrochemistry,”
Dover, New York, 1961, p. 342

bCalculated from Ag.



e Liquid junction potential (at different conc. and transference #)

HCI (C,)

conc.

HCI (C,)

distance x

e Diffusion

Conc. gradient: from high conc. to low conc.

Flux = D x conc. gradient (mol cm™ s1)
D: the diffusion coefficient of the moving species
Nernst-Einstein eq.
kgT

D; = A;
l lzzez




e Liquid junction potential (at different conc. and transference #)

TABLE 2.3.2 Ionic Properties at Infinite
Dilution in Aqueous Solutions at 25°C

Ion AQs cm? Q7! equiv'l" u, cm? sec ! \Val
H 349.82 | 3625x107?
K* 73.52 7.619 X 10~*
Na* 50.11 5.193 X 1074
Lit 38.69 4.010 X 1074
NH; 73.4 7.61 x107*
3Calt 59.50 6.166 X 1074
OH™ 198 | 205 x1073
Cl 76.34 ] 7912 x 1074
Br_ 784 8.13 x10°*
I 76.85 7.96 X 107*
NO; 71.44 7.404 X 1074
OAc™ 40.9 424 X 1074
ClO; 68.0 7.05 x107*
3805 79.8 827 x107*
HCO5 44.48 4.610 X 10~*
Fe(CN);~  101.0 1.047 X 1073
iFe(CN);~ 1105 1.145 X 1073

“From D. A. MaclInnes, “The Principles of Electrochemistry,”
Dover, New York, 1961, p. 342

bCalculated from Ag.

e H* and OH™: large conductivity

=>» Whereas other ions are pulled to the
electrode by coulombic attraction and
move by pushing aside solvent
molecules, the H* and OH™ ions can
take advantage of the water via
hydrogen-bond (much less frictional
resistance)

=» Grotthuss mechanism

@

> in

Qb
v

<
v

© llya Belevich
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e Liquid junction potential (at different conc. and transference #)

Liquid junction potential

J HCI (C)) diffusion S ﬁ

o o) . [

S | HCl(Cy) :> S H /¢ G,

Cy
distance x
_ o[HT] - 1) Initiallv io. is hicher (diffusi FHticf han i
ju+ = Dy+ (1) Initially j, is higher (diffusion of H* is faster) than j_
0x I

_ o[Cl™] =>» Charge difference and potential difference will be
Jci- = Dci- Ox _ set up across the interface b/w the two sol’ns.

(2) Then the rate of the CI~ transport will be accelerated (since migration will now
contribute to the rate of transport) and the H* transport rate will be retarded

(3) Ultimately a steady state will be reached: a potential difference will exist
at the boundary of the two sol’'ns = a liquid junction potential.

RT (CZ) * related to transference number (ionic conductivity)
C1

Eyip=(,—t_)—In
LiF * F e concentration ratio
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TABLE 2.3.2 Ionic Properties at Infinite
Dilution in Aqueous Solutions at 25°C

RT /G,
E;p=(.—t_)—In (—)
LjpP + F C,

Ion AQs cm? Q7! equiv" la 3y em?sec” ! VTP
H* 349.82 3.625 X 1073
K* 73.52 7.619 X 10~*
Na™* 50.11 5.193 X 10™*
Lit 38.69 4.010 X 1074
NH; 73.4 7.61 X 107*
1Cat 59.50 6.166 X 104
OH~ 198 2.05 X 1073
Cl™ 76.34 7.912 X 10™*
Br~ 78.4 8.13 x 1074
I 76.85 796 x 1074
NO; 71.44 7.404 X 1074
OAc™ 40.9 424 x10°*
ClO; 68.0 7.05 x107*
1503 79.8 8.27 X 107*
HCO3 44.48 4.610 X 10°*
Fe(CN);~ 1010 1.047 X 1073
fFe(CN):™ 1105 1.145 X 1073

“From D. A. MacInnes, “The Principles of Electrochemistry,”
Dover, New York, 1961, p. 342

bCalculated from Ag.

e Transference number (t,, t.)

The fraction of the current
carried by the cation and the anion

. A, A
TUALEAL T AL A

ex 1) LiCl: t, : 0.34,t_=0.66
=>» 66% of the current is carried by
the CI~

ex2)KCl: t,:0.49,t =0.51
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10. Salt bridges

s
Cu Zn

{ Cu2+ Zn2+ J

[l
Cu KCl (aq) Zn

L]
Ne) e

In the single container (mixing all)
Zn(s) + Cu?*(aq) © Zn?*(aq) + Cu(s) AG® = —1.11F

=>» The zinc electrode would very rapidly become
copper plated.

w/ salt bridge

=> e.g. measurement of standard electrode potential
=>» negligible liquid junction potential

ex) saturated aqueous KCl (5 M) w/ the half cell containing 0.01 M Cu?*

(1) K* and CI~ diffusing out of the salt bridge
(but tiny amount of Cu?* in the opposite direction)

(2) tp+ = te- = 0.5

Eup = (6~ t) = n(5) =0
Ljp =\ =)= ) =
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TABLE 2.3.2 Ionic Properties at Infinite
Dilution in Aqueous Solutions at 25°C

Ion Ao, cm? Q@ Vequiv? u, cm? sec”! VTP

H' 349.82 3.625 X 1073

K* 73.52 7.619 X 1074 )

Na* 50.11 5.193 X 1074 . . o

Li* 38.60 4.010 X 10~* * Representative salt bridges (similar : t,, t_)
NH; 73.4 761 x10°* ] (1) an aqueous solution of KCl

>Ca%* 59.50 6.166 X 10"; (2) a solution of ammonium nitrate electrolyte
OI‘I 198 205 X 10_4 (3) porous frlt

Cl 76.34 7912 x107% |

Br~ 78.4 8.13 x 1074

I 76.85 7.96 x 107* RT C

NO; 71.44 7404 X 10°% | Epjp = (t4 —t2) ln( 2)

OAc™ 40.9 424 X 10°° F Cq

Clo; 68.0 7.05 X 1074

N 79.8 827 x 107*

HCO3 44.48 4.610 X 10~*

Fe(CN);~ 1010 1.047 X 1073

iFe(CN)g~ 1105 1.145 X 1073

“From D. A. MaclInnes, “The Principles of Electrochemistry,”
Dover, New York, 1961, p. 342

bCalculated from Ag.
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12. Good example for usage of
Nernst equation
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The SHES mechanism depends on an additive cation (M")
that exhibits an effective reduction potential E, 4 less than that
of Li*. According to the Nernst equation:

RT . «
E = E¢ _ 22 g, ZRed

T o ag, M
where R is the universal gas constant (8.314472J K 'mol™'), T
is the absolute temperature (assume T = 298.15 K in this
work), and @ is the chemical activity for the relevant species
(ageq is for the reductant and ag, for the oxidant). @, = 7.,
where y, and ¢, are the activity coefficient and the
concentration of species x. F is the Faraday constant
(9.64853399 x 10* C mol™), and z is the number of moles

of electrons transferred. Although Li" has the lowest standard
reduction potential (Eg,4(Li*)) among all of the metals when
measured at standard conditions [1 mol L™ (M)], another
cation (M) may have an effective reduction potential lower
than that of Li* if M" has an chemical activity a, lower than that
of Li*. In the case of low concentration, @, can be simplified to
equal the concentration c,; then eq 1 can be simplified as:
Bay = By — 20V 1
z 0x )

The effective reduction potentials (vs SHE) of selected metal
cations at various concentrations were calculated according to

eq 2 and listed in Table 1 (assuming the activity coefficients ,

Table 1. Effective Reduction Potentials of Two Selected
Alkali Cations at Different Concentrations

E° (V)© effective reduction potential (V)
cations 1M 0.001 M 0.01 M 0.05 M 01 M
Li* —3.040
[ Cs" -3.026 —3.203 —3.144 —-3.103 -3.085 |
Rb" —2.980 —3.157 —3.098 —3.057 —3.039

“Note: E° is the standard reduction potential (vs SHE) of the cation at
1 M concentration.

= 1). When the concentration of cations of cesium (Cs") or
rubidium (Rb*) is less than 0.05 M in the electrolyte, their
effective reduction potentials (see the shaded cells in Table 1)
are lower than that of Li* at 1.0 M concentration (—3.040 V).
As a result, in a mixed electrolyte where the additive (Cs™ or
Rb*) concentration is much lower than the Li* concentration,
these additives should not be deposited at the Li deposition | g
potential and do not form thin layers of Li alloys at the
electrode surface. In contrast, the inorganic additives (including



\ 20 pm

20 pm

Figure 2. SEM images of the morphologies of Li films deposited in electrolyte of 1 M
LiPF,/PC with CsPF¢ concentrations of (a) 0 M, (b) 0.001 M, (c) 0.005 M, (d) 0.01 M, and (e)
0.05 M, at a current density of 0.1 mA cm™.

J. Am. Chem. Soc. 2013, 135, 4450-4456.
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