11 CHAPTER

SOLUTIONS

- **11.1** Composition of Solutions
- 11.2 Nature of Dissolved Species
- 11.3 Reaction Stoichiometry in Solutions:

Acid-Base Titrations

- **11.4** Reaction Stoichiometry in Solutions:
 - **Oxidation-Reduction Titrations**
- 11.5 Phase Equilibrium in Solutions: Nonvolatile Solutes
- **11.6** Phase Equilibrium in Solutions: Volatile Solutes
- 11.7 Colloidal Suspensions

General Chemistry I

- ✓ **Solution**: homogeneous mixing two or more pure substances (liquid solid, or gas) whose molecules interact directly in the mixed state.
 - Solvent: the major component
 - **Solute**: the minor component

Molecules experience new intermolecular forces in moving from pure solute or solvent into the mixed state.

Chap. 11

How are the properties and reactions of the pure solute modified when it is dispersed in the solvent?

11.1 COMPOSITION OF SOLUTIONS

Percent composition

Mass (or Weight) % =
$$\frac{\text{mass of solute}}{\text{mass of solution}} \times 100$$

Vol % = $\frac{\text{vol of solute}}{\text{vol of solution}} \times 100$

Parts per million & parts per billion

$$ppm = \frac{mass \text{ of solute}}{mass \text{ of solution}} \times 10^6 \approx O(mg L^{-1})$$

$$ppb = \frac{mass \text{ of solute}}{mass \text{ of solution}} \times 10^9 \approx O(\mu g L^{-1})$$

$$(\mu g \text{ kg}^{-1})$$

$$(\mu g \text{ kg}^{-1})$$

General Chemistry I

KAIST CHEMISTRY

474

Mole Fraction

$$X_1 = \frac{n_1}{n_1 + n_2}$$
, $X_2 = \frac{n_2}{n_1 + n_2} = 1 - X_1$ (for a binary mixture)

Molarity & Molality

Molarity (M) =
$$\frac{\text{moles solute}}{\text{liters solution}} = \text{mol L}^{-1}$$

✓ Molarity depends on temperature.

Molality (m) =
$$\frac{\text{moles solute}}{\text{kilograms solvent}} = \text{mol kg}^{-1}$$

✓ Molality is independent of temperature!

Example 11.1

A solution is prepared by dissolving 22.4 g of $MgCl_2$ in 0.200 L of water. Taking the density of pure water to be 1.00 g/cm³ and the density of the resulting solution to be 1.089 g/cm³, calculated the mole fraction, molarity and molality of $MgCl_2$ in this solution.

General Chemistry I

Example 11.2

A 9.386 M aqueous solution of sulfuric acid has a density of 1.5091 g/cm³. Calculate the molality, the percentage by mass, and the mole fraction of sulfuric acid in this solution.

Preparing a solution of NiCl₂ using a volumetric flask

477

> Dilution of solution

Chemical amount conserved.

$$n = c_i V_i = c_f V_f \longrightarrow c_f = \frac{\text{moles solute}}{\text{final solution volume}} = \frac{c_i V_i}{V_f}$$

n: number of moles of solute

 $c_{i(f)}$: initial (final) concentration in molarity

 $V_{i(f)}$: initial (final) solution volume in liters

Example 11.3

- (a) Describe how to prepare 0.500 L of a 0.100 M aqueous solution of potassium hydrogen carbonate (KHCO₃).
- (b) Describe how to dilute this solution to a final concentration of $0.0400\,\mathrm{M}$ KHCO₃.

General Chemistry I

478

11.2 NATURE OF DISSOLVED SPECIES

Original phases (solvent-to-solvent and solute-to-solute attractions) are broken up and replaced, at least in part, by new solvent-to-solute attractions.

Intermolecular forces

- -Water molecule-molecular solutes
- -Water molecule-ionic solutes

11.2 NATURE OF DISSOLVED SPECIES

Aqueous Solutions of Molecular Species

- Polar molecules dissolved by water ~ "Like dissolves like"
- \triangleright Sugars: $C_m(H_2O)_n$
 - ~ Sucrose ($C_{12}H_{22}O_{11}$), Fructose ($C_6H_{12}O_6$), Ribose ($C_5H_{10}O_5$)
 - ~ Do not contain water molecules
 - ~ Include polar -OH groups
 - ~ Dipole-dipole interaction between –OH groups and water molecules → *hydrogen bonds*
- * Nonpolar molecule in water: oil w/water -> do not dissolve significantly.

General Chemistry I

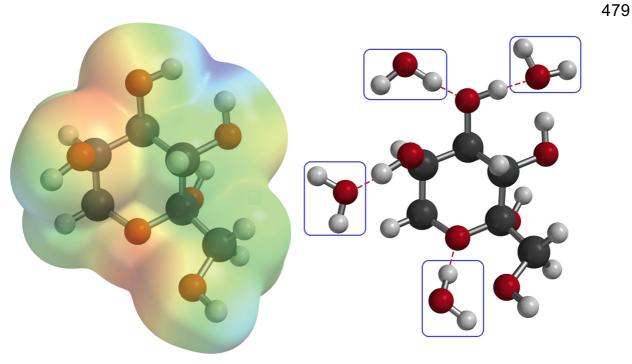
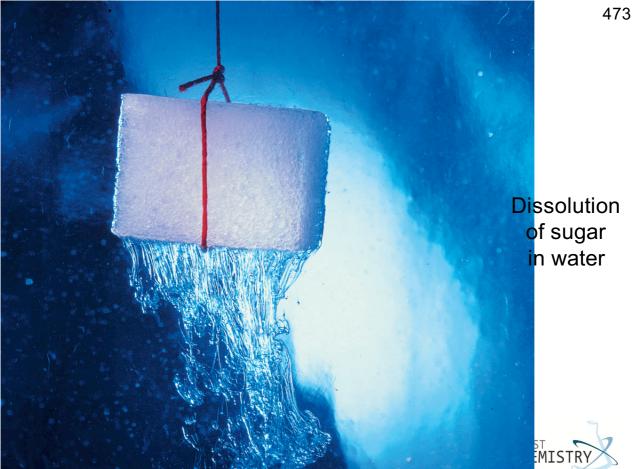
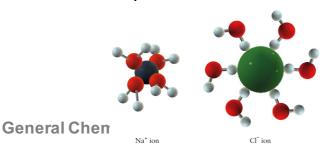



Fig. 11.2 Electrostatic potential energy surface of a fructose molecule and its hydrated form in aqueous solution. Four water molecules are bonded with hydrogen bondings.

CHEMISTRY

- **Aqueous Solutions of Ionic Species (Electrolytes)**
- Solubility: Maximum mass dissolved in 1 L at 25 °C

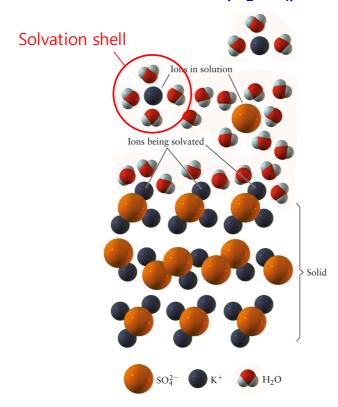

$$K_2SO_4(s) \to 2 K^+(aq) + SO_4^{2-}(aq),$$

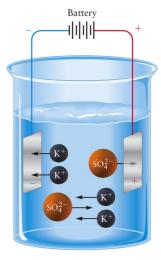
Solubility of K₂SO₄: 120 g L⁻¹ at 25°C

Dissolution of ionic species → lon-dipole forces

Each ion is surrounded by an intact solvation shell of water molecules.

- ~ Good conductor, strong electrolyte
- ~ Electrophoresis under an electric field




CI-H-O

→ Hydrogen bond is more dominant than ion-dipole force.

479

➤ Potassium sulfate (K₂SO₄)

Solvated ions

Conducts electricity.

Fig 11.4

General Chemistry I

Fig. 11.3 Dissolves in water.

480

❖ Insoluble salts

 $BaSO_4(s) \rightarrow Ba^{2+}(aq) + SO_4^{2-}(aq),$ Solubility of $BaSO_4$: 0.0025 g L⁻¹ at 25°C

> Precipitation reaction

$$\begin{split} & \mathsf{BaCl_2}(aq) + \mathsf{K_2SO_4}(aq) \to \mathsf{BaSO_4}(s) + 2 \; \mathsf{KCl}(aq) \\ & \mathsf{Ba^{2+}}(aq) + 2 \; \mathsf{Cl^-}(aq) + 2 \; \mathsf{K^+}(aq) + \mathsf{SO_4^{2-}}(aq) \\ & \to \mathsf{BaSO_4}(s) + 2 \; \mathsf{K^+}(aq) + 2 \; \mathsf{Cl^-}(aq) \end{split}$$

❖ Net ionic equation

 $Ba^{2+}(aq) + SO_4^{2-}(aq) \rightarrow BaSO_4(s)$

Spectator ions: Cl- and K+

